简谐振动的判据

\[f = -kx\] \[\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega^2 x = 0\] \[x = A\cos (\omega t + \varphi)\]

弹簧振子

\[\frac{k}{m} = \omega^2\] \[T = 2\pi\sqrt{\frac{m}{k}}\]

单摆

\[\omega^2 = \frac{g}{l}\] \[T = 2\pi\sqrt{\frac{l}{g}}\]

复摆

复摆

\[\vec{M} = \vec{l} \times \vec{F}\]

其中

\[M = -mgl\sin \theta = J\alpha = J \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2}\]

应用近似 $\sin\theta \approx \theta$

\[-mgl\theta = J\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2}\]

套用形式

\[\frac{\mathrm{d}^2 \theta}{\mathrm{d} t} + \omega^2\theta = 0\]

\[\omega = \sqrt{\frac{mgl}{J}}\]

扭摆

\[M_z = -D\theta\] \[J_z \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -D \theta\]

\[\omega = \sqrt{\frac{D}{J_z}}\]

同方向同频率简谐振动的合成

\[x_1 = A_1\cos(\omega t + \varphi_1)\] \[x_2 = A_2\cos(\omega t + \varphi_2)\] \[A = \sqrt{A_1^2 + A_2^2 + 2 A_1 A_2 \cos(\varphi_2 - \varphi_1)}\] \[\tan \varphi = \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}\]

两个同方向不同频率的简谐振动的合成

运用和差化积公式

\[x = \left(2A_1 \cos \frac{\omega_1 - \omega_2}{2}t\right)\cos \frac{\omega_1 + \omega_2}{2} t\]

拍频(振幅变化的频率)

\[\nu = \nu_2 - \nu_1\]